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Numerical Integration Method
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VANDERBILT UNIVERSITY
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Abstract

Line shapes in gas chromatography are modeled by numerical integration of
the differential equations describing mass transfer. The numerical dispersion
which usually introduces substantial error into such calculations is greatly
reduced by the use of one of three so-called asymmetrical upwind algorithms for
handling the advection term. The effects of the various parameters in the model,
which assumes a Langmuir adsorption isotherm, are illustrated.

INTRODUCTION

The problem of calculating line shapes in gas chromatography has
been around for many years and has been attacked by a variety of
different approaches. Line shapes are determined by the interplay
between eddy diffusion, molecular diffusion, advection, the nature of the
partitioning of the volatile solute between the moving vapor phase and
the stationary liquid phase, and the resistance to mass transfer between
the moving and stationary phases. For many purposes the use of
Gaussian peaks and the Van Deemter equation is quite adequate. The
early work on line shape calculations has been reviewed by Giddings
).

A general method for doing line shape calculations by means of a
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stochastic approach was developed by Giddings (/-6). Houghton has
used perturbation methods for taking the effects of diffusion and
nonequilibrium mass transport into account (7). Vink has carried out line
shape calculations using a mesh technique for solving the partial
differential equation (8, 9); our approach here carries on in this tradition.
Yamazaki (/0) and Kocirik (//) have used moment methods in the
analysis of nonequilibrium chromatographic line shapes. Olson has
determined the effect of carrier gas expansion in the column on peak
width (12).

A number of special functions from analysis have been used in
attacking the line shape problem. These include the Poisson distribution
(1), Bessel functions (/), Gaussians (/3) and exponentially modified
Gaussians (/4), a linear combination of the Cauchy function with a
Gaussian (13), the Edgeworth series (15), the Gram-Charlier series (/6),
and a combination of the hyperbolic tangent joined to a Gaussian (/7).

We investigated the effect of the finite rate of mass transport of solute
between the moving and stationary phases by means of a time constant
approach (18). A later paper of ours dealt with the effects of velocity and
diffusion constant variation along the length of the gas chromatographic
column, of the finite rate of mass transport, of finite sample injection time
interval, and of departures from Henry’s law behavior of the solute (19).
Mott and Grushka studied the dependence of gas chromatograph peaks
on the Chesler-Cram parameters (20, 21). Least squares fits of the Gram-
Charlier series to experimental elution profiles were made by Vidal-
Madjar and Guiochon (22). Pauls and Rogers investigated band broad-
ening by use of exponentially modified Gaussians (23).

Dondi and co-workers have carried out statistical analyses of gas
chromatograph peaks using the Gram-Charlier series and the Edge-
worth-Cramer series (24), and have used the Edgeworth-Cramer series to
determine peak parameters (25). Foley and Dorsey have developed
improved equations for calculating figures of merit for ideal and skewed
peaks (26).

If one uses a model with a nonlinear isotherm (departures from
Henry’s law behavior), one must give up the hope of obtaining exact
analytical solutions to the partial differential equation governing the line
shapes. Such departures from linearity are of particular interest in
connection with preparative columns, which are usually run at relatively
high loadings. One’s choices are then 1) to use the linear theory, realizing
that this may be a relatively poor approximation; 2) to use a series or
moment method, which may give very good fits, but leaves obscure the
working of the mechanisms affecting the line shapes; or 3) to resort to
numerical integration of the partial differential equation, which is by no
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means as free from difficulties as one would like. Here we shall be
concerned with the third alternative. One of the major problems with
numerical integration of such equations is the occurrence of numerical
dispersion, an artifact generally associated with the advection term which
results in erroneous and extensive broadening of the peaks.

This problem of excessive numerical dispersion in the numerical
integration of diffusion-advection equations is one which frequently
arises in connection with the modeling of the dynamics of contaminants
in groundwater; Anderson has given an excellent summary of the
situation and of a number of techniques used to circumvent the difficulty
(27). Leonard has shown that numerical dispersion can be greatly
reduced by the use of so-called asymmetrical upwind algorithms for
representing the advection term in these equations (28). We have utilized
Leonard’s QUICK algorithm and several others also based on Taylor’s
series expansions, finding that symmetrical representations for advection
lead to unstable behavior, as do asymmetrical downwind formulas; but
asymmetrical 3- or 4-point formulas are quite stable (ie., free from
oscillatory behavior) and result in drastically reduced numerical dis-
persion (29, 30). One constructs a set of coupled ordinary differential
equations defined on mesh points in the space of the problem, and then
integrates this set forward in time by means of any one of a number of
standard methods. We have found fairly simple predictor-corrector
methods to be quite satisfactory (31).

Here we examine the application of three of these upwind asymmetri-
cal algorithms for the advective term to the calculation of gas chromato-
graph peak shapes. We assume that the partitioning of the solute between
the moving and stationary phases is governed by a Langmuir isotherm,
and we also assume local equilibrium between the moving and stationary
phases. This last assumption could be relaxed without causing any
difficulties with the upwind asymmetrical algorithms.

ANALYSIS

The mathematical formulation of the gas chromatography model just
described is as follows.

om(x,1) 0 de °
— =4 —| D5} - = 1
ot Ox ( ox ) Ox 0e,) )
_ Cic,
cl CI +c (2)
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m = (fvcg +ﬁCI)A (3)

where m(x,t) = mass of solute per unit length of column a distance x from
the head of the column at time ¢
A = cross-sectional area of column
D = axial dispersion constant, dependent on volumetric flow rate
of gas
v = volumetric flow rate of gas at x
cx,7) = solute concentration (g/cm’) in the vapor phase at x,t
c{x.f) = solute concentration (g/cm®) in the liquid phase at x,z
¢/ = Langmuir isotherm parameter
¢, = Langmuir isotherm parameter
f, = voids fraction in the column
f; = liquid phase volume fraction in the column

Equation (1) is our dispersion-advection equation for the column.
Equation (2) is the equilibrium expression for the partitioning of solute
between the liquid and vapor phases. Equation (3) relates the mass of
solute per unit length in the column to the solute concentrations in the
liquid and vapor phases. The nonlinearity of Eq. (2) precludes the
solution of the system in closed form and dictates a numerical solution.
This is usually done by replacing the partial differential equation by a set
of coupled ordinary differential equations involving the values of m and
¢, at a discrete set of points x,. The most physically intuitive algorithm for
this is the one generally used to derive the partial differential equation in
the first place,

dm; AD

1
I AR (Cgiv1 — 2041+ Cgic) + = (VisiCpiot = ViCei)s

Ax
i=1,2,...,N 4
mAx = solute mass in ith volume element of the column

(The variables c,, ¢, and m in Eqgs. (2) and (3) are also subscripted.) The
peaks obtained by solution of this system in the limit ¢/>c, c;—>, ¢'/
¢; = Ky (a linear isotherm) are very much broader than the peaks given by
the exact solution to this special case, however. This excessive spreading
remains even if one sets the axial dispersion constant equal to zero,
establishing that the advection term is the source of this erroneous
dispersion.
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Another algorithm which one might consider for representation of the
advection term is

-9 1
45(;—6‘)_ = Ax (VieuCiov = VienCivu) )

which on linear interpolation to represent the quantities at the half-
integral points gives

—d(ve) 1
ox  2Ax

(Vio1Ciz1 = Vix1€Cis1) (6)

This algorithm, and all other algorithms we have tried which are
antisymmetric about the point i (so-called symmetrical formulas) turned
out to be very unsatisfactory. As one integrates the equations forward in
time, the solutions acquire a highly oscillatory character, with the
oscillations increasing without apparent limit as the integration proceeds.
(See Ref. 29 for illustrations of some very similar calculations.)

Leonard’s exhortations on the advantages to be gained by the use of
assymmetrical upwind algorithms in integrating partial differential
equations such as the diffusion-advection equation (28) and our own
experience with using this approach on groundwater problems (29, 30)
dictated their use in the gas chromatography problem. Leonard has
proposed the use of the so-called QUICK algorithm, a 3-point asymetri-
cal formula of the form

-d 1 -1 3
E(Vc)f = AT [T(vc)i—Z + 2(ve)ioy — E(vc)i:] @)

This formula also represents [(vc);_,, — (V¢);4.]/Ax as well.

We have derived two asymmetrical 4-point upwind formulas to
represent the advection term: These are

—d(ve); 1 _ -
o = Ax [(vE)imss — (VO)isn] =

1 1 7
— | — =(v¢)i-2 + —(vc);-
Ax[ 8()2 8()1

3 3
=50 - g(vc)m] (8)
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and

—a(VC)i:L _l ) , _l _—l .
ey [ 6(vc),,2+ (ve);_ 2(vc), 3(vc),+l] 9)

All of these formulas are obtained by writing Taylor’s series for the
desired quantity expanded about thei — 2,7/ — 1, i, and i + 1th points (or
1 —2,i — 1,and in the case of Eq. 7), and then using the set of equations
to eliminate the higher derivatives.

We note that use of any of these asymmetrical upwind algorithms
eliminates the interpretation of the compartments into which the column
is mathematically partitioned as theoretical transfer units (theoretical
plates).

Our discrete approximation to the partial differential equation then is
taken as Eq. (4), with the advective term replaced by Eqgs. (7), (8), or (9),
and the algebraic Egs. (2) and (3) adjoined. We then solve Eq. (3) for ¢;;
(the subscript i now replaces the continuous variable x), substitute this
result in Eq. (2), and rearrange to obtain a quadratic equation in c,;:

Yl f.A

This is solved by the quadratic formula; the positive sign must be taken to
avoid negative values of c,;.

The system of differential equations is readily integrated by the
following predictor-corrector method (31):

0=c + <c;+ﬁc;- m")cg,,.—mcg (10)

Starter:

dm,

m(At) = m(0) + 7 (0)Ar (11)
Predictor:
dm,
mX + At) = mi(t — Ar) + = (1) - 241

Corrector:

. *

m{t + At) = m(t) + A ﬂ(t) + dm, (t+ Ap
2 dt dt
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One starts initially with the total mass of the sample in the first
compartment of the column. Equations (10) and (2) are used to calculate
¢,; and c,;. It is then possible to integrate the differential equations
forward one step in time, leading to a new set of values of the m,. These
give new c;; and ¢,;. And so on.

It is necessary to modify the differential equations fori = 1, 2, and N,
since the general equation requires nonexistent values of the c,; for these
values of i. We write

dm AD 1
'_dTl = Kx—z (cg.Z - Cg.l) - A—x(vcg)l (12)
dm, _ AD

1
- 2 (cg.3 - 2cg.2 + Cg.l) + [(vcg)l - (ch)Z (13)
dt Ax Ax

dm AD 1
dtN = Xx—z (_cg,N +con-y) + _A? [(ch)Nﬂl - (VCg)N] (14)

Initial exploratory work with this approach was carried out on an
Apple Ile, for which a program in Applesoft BASIC was written,
debugged, and compiled. A typical run on the Apple Ile took about 2 h.
This work indicated that numerical dispersion was very substantially
reduced by use of any of the asymmetric upwind algorithms. A Fortran 77
program was therefore written, and the bulk of the computations were
carried out on a DEC 1099 computer. Most of the runs took well under a
minute of CPU time. The runs with N = 200 and ¢ = 0.1 s took about 68 s;
when r was reduced to 0.05 s, these runs took about 144 s. The results were
tabulated and also displayed as graphs on the line printer. In most of the
figures we shall be comparing results of the three asymmetric upwind
algorithms—Eqs. (7), (8), and (9)—with the theoretical plate model for
advection given in Eq. (4). We shall call Egs. (7), (8), and (9) the first,
second, and third algorithms;

-0 1
a—(vc)i = Ax [(ve)ioy — (ve)l] (15)

will be called the fourth algorithm.
All parameters are given in cgs units. Unless stated otherwise, the
following parameters have the values indicated.

solute mass injected = 10™° g
Ar=0.1s
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f, =075

f; = 0.05

column length = 250 cm

column cross-sectional area = 0.25 cm?
v = 1.00 mL/s

g =132X 107* g/mL
¢;=50X10"%g/mL

Since we are interested in exploring the numerical dispersion resulting
from the advection term, we have set the dispersion constant equal to
zero in these runs. Since we are assuming instantaneous achievement of
local equilibrium in the column, we would expect that, for runs with
loadings in the linear range of the isotherm, we should see a very sharp
spike coming off the column. Departures from this behavior are due to
numerical dispersion.

Figure 1 compares the four algorithms for modeling advection for a
column partitioned into 50 compartments (N = 50). Ar = 0.1 s here. The
two 4-point algorithms give peaks which are somewhat narrower than the
3-point algorithm and which are less than half as wide as the peak
obtained using the theoretical plate model. Figure 2 displays an identical
set of runs, except that here N = 150. The peak widths obtained with the
4-point formulas are again somewhat less than that obtained with the 3-
point formula, and are less than a third the peak width resulting from the

20+

concentration

time {sec)

FI1G. 1. Gas chromatograph line shapes. N = 50. (a) First algorithm (3-point); (b) second
algorithm; (c) third algorithm; (d) fourth algorithm (theoretical transfer unit model). Other
parameters are given in the text.



13: 20 25 January 2011

Downl oaded At:

LINE SHAPES IN GAS CHROMATOGRAPHY 347

f ﬂ
201 x
JRN

30 40 50 60 70

time {sec)

concentration

FIG. 2. Gas chromatograph line shapes. N = 150. The curves are labeled as in Fig. 1. Other
parameters are given in the text.

theoretical plate treatment. We have set N = 200 in Fig. 3. The same
pattern seen in the first two figures is repeated, except that the width of
the peaks obtained with the 4-point algorithms is now about a fourth of
the peak obtained with the theoretical plate model. In the calculations
given in Fig. 3 it was necessary to use Az = 0.05 s in the 3-point algorithm
to avoid instability; Ar= 0.1 s proved satisfactory in the other al-
gorithms.

The curves in Fig. 4 show the expected peak narrowing as N is
increased from 50 to 200; line width appears to be varying as N™*. Figures
5 and 6 present similar plots for the second and third algorithms; it is
apparent that both algorithms are capable of producing quite narrow
peaks for values of N equal to or above 150.

Figure 7 shows the effects of varying the gas flow rate. The peaks were
obtained with the second algorithm. The relative positions of the peak
maxima are exactly as one would expect from the various flow rates.

We conclude that the use of either of these 4-point upwind asym-
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30 40 50 60 70
time (sec)

FiG. 3. Gas chromatograph line shapes. N = 200. The curves are labeled as in Fig. 1.
At = 0.05 s for Curve a (first algorithm); Ar = 0.1 s for Curves b, ¢, and d. Other parameters
are given in the text.

20F

=4

2

B

c

-V}

|5}

c

5]

° i0r
A
30

time (sec)

F1G. 4. Effect of N on gas chromatograph line shapes. N = 50, 100, 150, 200 (a-d). Curves
were calculated with the fourth algorithm (theoretical transfer unit model).
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20

concentration
o
D ———

101

1 )1 s

30 40 50 60 70

time {sec)

F1G. 5. Effect of N on gas chromatograph line shapes. The second algorithm was used.
N = 50, 100, 150, 200 (a-d).

metrical algorithms in the modeling of gas chromatography line shapes
drastically reduces numerical dispersion in the numerical integration of
the relevant equations. With this technique, numerical integration
becomes a useful, fast, and economical method for calculating gas
chromatographic line shapes for volatile solutes exhibiting departures
from Henry’s law behavior.
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Fi1G. 6. Effect of N on gas chromatograph line shapes. The third algorithm was used. N = 50,
100, 150, 200 (a-d).
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FI1G. 7. Effect of flow rate on gas chromatograph line shapes. The second algorithm was
used. N = 100, Ar = 0.2 s.
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