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Line Shapes in Gas Chromatography. An Improved 
Numerical Integration Method 

KANJI TAMAMUSHI and DAVID J. WILSON* 
DEPARTMENT OF CHEMISTRY 
VANDERBILT UNIVERSITY 
NASHVILLE. TENNESSEE 31235 

Abstract 

Line shapes in gas chromatography are modeled by numerical integration of 
the differential equations describing mass transfer. The numerical dispersion 
which usually introduces substantial error into such calculations is greatly 
reduced by the use of one of three so-called asymmetrical upwind algorithms for 
handling the advection term. The effects of the various parameters in the model, 
which assumes a Langmuir adsorption isotherm, are illustrated. 

INTRODUCTION 

The problem of calculating line shapes in gas chromatography has 
been around for many years and has been attacked by a variety of 
different approaches. Line shapes are determined by the interplay 
between eddy diffusion, molecular diffusion, advection, the nature of the 
partitioning of the volatile solute between the moving vapor phase and 
the stationary liquid phase, and the resistance to mass transfer between 
the moving and stationary phases. For many purposes the use of 
Gaussian peaks and the Van Deemter equation is quite adequate. The 
early work on line shape calculations has been reviewed by Giddings 

A general method for doing line shape calculations by means of a 
(1 ). 
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340 TAMAMUSHI AND WILSON 

stochastic approach was developed by Giddings (1-6). Houghton has 
used perturbation methods for taking the effects of diffusion and 
nonequilibrium mass transport into account (7). Vink has carried out line 
shape calculations using a mesh technique for solving the partial 
differential equation (8, 9); our approach here carries on in this tradition. 
Yamazaki (10) and Kocirik (11) have used moment methods in the 
analysis of nonequilibrium chromatographic line shapes. Olson has 
determined the effect of carrier gas expansion in the column on peak 
width (12). 

A number of special functions from analysis have been used in 
attacking the line shape problem. These include the Poisson distribution 
( I ) ,  Bessel functions ( I ) ,  Gaussians (13) and exponentially modified 
Gaussians (14), a linear combination of the Cauchy function with a 
Gaussian (13), the Edgeworth series ( I S ) ,  the Gram-Charlier series (16), 
and a combination of the hyperbolic tangent joined to a Gaussian (17). 

We investigated the effect of the finite rate of mass transport of solute 
between the moving and stationary phases by means of a time constant 
approach (18). A later paper of ours dealt with the effects of velocity and 
diffusion constant variation along the length of the gas chromatographic 
column, of the finite rate of mass transport, of finite sample injection time 
interval, and of departures from Henry’s law behavior of the solute (19). 
Mott and Grushka studied the dependence of gas chromatograph peaks 
on the Cheder-Cram parameters (20, 21). Least squares fits of the Gram- 
Charlier series to experimental elution profiles were made by Vidal- 
Madjar and Guiochon (22). Pauls and Rogers investigated band broad- 
ening by use of exponentially modified Gaussians (23). 

Dondi and co-workers have carried out statistical analyses of gas 
chromatograph peaks using the Gram-Charlier series and the Edge- 
worth-Cramer series (24), and have used the Edgeworth-Cramer series to 
determine peak parameters (25). Foley and Dorsey have developed 
improved equations for calculating figures of merit for ideal and skewed 
peaks (26). 

If one uses a model with a nonlinear isotherm (departures from 
Henry’s law behavior), one must give up the hope of obtaining exact 
analytical solutions to the partial differential equation governing the line 
shapes. Such departures from linearity are of particular interest in 
connection with preparative columns, which are usually run at relatively 
high loadings. One’s choices are then 1) to use the linear theory, realizing 
that this may be a relatively poor approximation; 2) to use a series or 
moment method, which may give very good fits, but leaves obscure the 
working of the mechanisms affecting the line shapes; or 3) to resort to 
numerical integration of the partial differential equation, which is by no 
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LINE SHAPES IN GAS CHROMATOGRAPHY 341 

means as free from difficulties as one would like. Here we shall be 
concerned with the third alternative. One of the major problems with 
numerical integration of such equations is the occurrence of numerical 
dispersion, an artifact generally associated with the advection term which 
results in erroneous and extensive broadening of the peaks. 

This problem of excessive numerical dispersion in the numerical 
integration of diffusion-advection equations is one which frequently 
arises in connection with the modeling of the dynamics of contaminants 
in groundwater; Anderson has given an excellent summary of the 
situation and of a number of techniques used to circumvent the difficulty 
(27). Leonard has shown that numerical dispersion can be greatly 
reduced by the use of so-called asymmetrical upwind algorithms for 
representing the advection term in these equations (28). We have utilized 
Leonard’s QUICK algorithm and several others also based on Taylor’s 
series expansions, finding that symmetrical representations for advection 
lead to unstable behavior, as do asymmetrical downwind formulas; but 
asymmetrical 3- or 4-point formulas are quite stable (i.e., free from 
oscillatory behavior) and result in drastically reduced numerical dis- 
persion (29, 30). One constructs a set of coupled ordinary differential 
equations defined on mesh points in the space of the problem, and then 
integrates this set forward in time by means of any one of a number of 
standard methods. We have found fairly simple predictor-corrector 
methods to be quite satisfactory (32). 

Here we examine the application of three of these upwind asymmetri- 
cal algorithms for the advective term to the calculation of gas chromato- 
graph peak shapes. We assume that the partitioning of the solute between 
the moving and stationary phases is governed by a Langmuir isotherm, 
and we also assume local equilibrium between the moving and stationary 
phases. This last assumption could be relaxed without causing any 
difficulties with the upwind asymmetrical algorithms. 

ANALYSIS 

The mathematical formulation of the gas chromatography model just 
described is as follows. 
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342 TAMAMUSHI AND WILSON 

where rn(x,t) = mass of solute per unit length of column a distancex from 
the head of the column at time t 

A = cross-sectional area of column 
D = axial dispersion constant, dependent on volumetric flow rate 

v = volumetric flow rate of gas at x 
c&t) = solute concentration (dcm') in the vapor phase at x,t 
c,(x,t) = solute concentration (g/cm3) in the liquid phase at x,t 
c; = Langmuir isotherm parameter 
c i  = Langmuir isotherm parameter 
fv = voids fraction in the column 
fi = liquid phase volume fraction in the column 

of gas 

Equation (1) is our dispersion-advection equation for the column. 
Equation (2) is the equilibrium expression for the partitioning of solute 
between the liquid and vapor phases. Equation ( 3 )  relates the mass of 
solute per unit length in the column to the solute concentrations in ihe 
liquid and vapor phases. The nonlinearity of Eq. (2) precludes the 
solution of the system in closed form and dictates a numerical solution. 
This is usually done by replacing the partial differential equation by a set 
of coupled ordinary differential equations involving the values of m and 
cn at a discrete set of points x,. The most physically intuitive algorithm for 
this is the one generally used to derive the partial differential equation in 
the first place, 

i = 1 , 2 , .  . . , N  (4) 

m,Ax = solute mass in ith volume element of the column 

(The variables cg, cI, and m in Eqs. (2) and ( 3 )  are also subscripted.) The 
peaks obtained by solution of this system in the limit cbm,  c;-@, c ' l  
c i  = KH (a linear isotherm) are very much broader than the peaks given by 
the exact solution to this special case, however. This excessive spreading 
remains even if one sets the axial dispersion constant equal to zero, 
establishing that the advection term is the source of this erroneous 
dispersion. 
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LINE SHAPES IN GAS CHROMATOGRAPHY 343 

Another algorithm which one might consider for representation of the 
advection term is 

which on linear interpolation to represent the quantities at the half- 
integral points gives 

This algorithm, and all other algorithms we have tried which are 
antisymmetric about the point i (so-called symmetrical formulas) turned 
out to be very unsatisfactory. As one integrates the equations forward in 
time, the solutions acquire a highly oscillatory character, with the 
oscillations increasing without apparent limit as the integration proceeds. 
(See Ref. 29 for illustrations of some very similar calculations.) 

Leonard’s exhortations on the advantages to be gained by the use of 
assymmetrical upwind algorithms in integrating partial differential 
equations such as the diffusion-advection equation (28) and our own 
experience with using this approach on groundwater problems (29, 30) 
dictated their use in the gas chromatography problem. Leonard has 
proposed the use of the so-called QUICK algorithm, a 3-point asymetri- 
cal formula of the form 

This formula also represents [ ( V C ) , _ , ~  - (vc)~+,]/Ax as well. 

represent the advection term: These are 
We have derived two asymmetrical 4-point upwind formulas to 

7 
8 

- [ ( V C ) ; - , / ,  - ( V C ) i + H ]  z ( V C ) , - Z  + - ( V C ) j - I  
1 -- 

ax Ax Ax 
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344 TAMAMUSHI AND WILSON 

and 

ax Ax 

All of these formulas are obtained by writing Taylor’s series for the 
desired quantity expanded about the i - 2, i - 1, i, and i + lth points (or 
I - 2, i - 1, and i in the case of Eq. 7), and then using the set of equations 
to eliminate the higher derivatives. 

We note that use of any of these asymmetrical upwind algorithms 
eliminates the interpretation of the compartments into which the column 
is mathematically partitioned as theoretical transfer units (theoretical 
plates). 

Our discrete approximation to the partial differential equation then is 
taken as Eq. (4), with the advective term replaced by Eqs. (7), (8), or (9), 
and the algebraic Eqs. (2) and (3) adjoined. We then solve Eq. (3) for ci,, 
(the subscript i now replaces the continuous variable x), substitute this 
result in Eq. (2), and rearrange to obtain a quadratic equation in cg,,: 

This is solved by the quadratic formula; the positive sign must be taken to 
avoid negative values of cg,;. 

The system of differential equations is readily integrated by the 
following predictor-corrector method (3  1): 

Starter: 

dm 
dt m, (At )  = m,(O) + --‘(O)At 

Predictor: 

dmi 
dt m,*(t + At)  = m,(t - A t )  + - ( t )  .2At 

Corrector: 

1 dm * 
dt 

m,(t + At)  = m,(t) + ( t )  + L ( t  + At)  
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LINE SHAPES IN GAS CHROMATOGRAPHY 345 

One starts initially with the total mass of the sample in the first 
compartment of the column. Equations (10) and (2) are used to calculate 
c,,, and c ~ , ~ .  It is then possible to integrate the differential equations 
forward one step in time, leading to a new set of values of the mi. These 
give new c,,~ and cgi And so on. 

It is necessary to modify the differential equations for i = 1, 2, and N ,  
since the general equation requires nonexistent values of the cnr for these 
values of i. We write 

Initial exploratory work with this approach was carried out on an 
Apple IIe, for which a program in Applesoft BASIC was written, 
debugged, and compiled. A typical run on the Apple IIe took about 2 h. 
This work indicated that numerical dispersion was very substantially 
reduced by use of any of the asymmetric upwind algorithms. A Fortran 77 
program was therefore written, and the bulk of the computations were 
carried out on a DEC 1099 computer. Most of the runs took well under a 
minute of CPU time. The runs with N = 200 and t = 0.1 s took about 68 s; 
when t was reduced to 0.05 s, these runs took about 144 s. The results were 
tabulated and also displayed as graphs on the line printer. In most of the 
figures we shall be comparing results of the three asymmetric upwind 
algorithms-Eqs. (7), (8), and (9)-with the theoretical plate model for 
advection given in Eq. (4). We shall call Eqs. (7), (8), and (9) the first, 
second, and third algorithms; 

-a 1 
-(vc); E __ [(vc),-, - (vc);] ax Ax (15) 

will be called the fourth algorithm. 

following parameters have the values indicated. 
All parameters are given in cgs units. Unless stated otherwise, the 

solute mass injected = g 
At = 0.1 s 
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348 TAMAMUSHI AND WILSON 

fy = 0.75 
fi = 0.05 
column length = 250 cm 
column cross-sectional area = 0.25 cm’ 
v = 1.00 mL/s 
c i  = 3.2 X g/mL 
c; = 5.0 X g/mL 

Since we are interested in exploring the numerical dispersion resulting 
from the advection term, we have set the dispersion constant equal to 
zero in these runs. Since we are assuming instantaneous achievement of 
local equilibrium in the column, we would expect that, for runs with 
loadings in the linear range of the isotherm, we should see a very sharp 
spike coming off the column. Departures from this behavior are due to 
numerical dispersion. 

Figure 1 compares the four algorithms for modeling advection for a 
column partitioned into 50 compartments (N = 50). At = 0.1 s here. The 
two 4-point algorithms give peaks which are somewhat narrower than the 
3-point algorithm and which are less than half as wide as the peak 
obtained using the theoretical plate model. Figure 2 displays an identical 
set of runs, except that here N = 150. The peak widths obtained with the 
4-point formulas are again somewhat less than that obtained with the 3- 
point formula, and are less than a third the peak width resulting from the 

*O t 

time (sec) 

FIG. 1. Gas chromatograph line shapes. N = 50. (a) First algorithm (3-point); (b) second 
algorithm; (c) third algorithm; (d) fourth algorithm (theoretical transfer unit model). Other 

parameters are given in the text. 
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b 

30 40 50 60 70 
time (sec) 

FIG. 2. Gas chromatograph line shapes. N = 150. The curves are labeled as in Fig. 1.  Other 
parameters are given in the text. 

theoretical plate treatment. We have set N =  200 in Fig. 3. The same 
pattern seen in the first two figures is repeated, except that the width of 
the peaks obtained with the 4-point algorithms is now about a fourth of 
the peak obtained with the theoretical plate model. In the calculations 
given in Fig. 3 it was necessary to use At = 0.05 s in the 3-point algorithm 
to avoid instability; At = 0.1 s proved satisfactory in the other al- 
gorithms. 

The curves in Fig. 4 show the expected peak narrowing as N is 
increased from 50 to 200; line width appears to be varying as N-”. Figures 
5 and 6 present similar plots for the second and third algorithms; it is 
apparent that both algorithms are capable of producing quite narrow 
peaks for values of N equal to or above 150. 

Figure 7 shows the effects of varying the gas flow rate. The peaks were 
obtained with the second algorithm. The relative positions of the peak 
maxima are exactly as one would expect from the various flow rates. 

We conclude that the use of either of these 4-point upwind asym- 
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30 40 50 60 70 

time (sec) 

FIG. 3. Gas chromatograph line shapes. N = 200. The curves are labeled as in Fig. 1. 
Af = 0.05 s for Curve a (first algorithm): Ar = 0.1 s for Curves b. c, and d. Other parameters 

are given in the text. 

d 

30 40 50 60 70 

time (sec) 

FIG. 4. Effect of N on gas chromatograph line shapes. N = 50, 100, 150, 200 (a-d). Curves 
were calculated with the fourth algorithm (theoretical transfer unit model). 
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FIG. 

.- 0' 
c 
L c 
C 
m 
C 

0 

5. Effect 

30 40 50 60 70 

time (sec) 

of N on gas chromatograph line shapes. The second algorithm was used. 
N = 50, 100, 150, 200 (a-d). 

metrical algorithms in the modeling of gas chromatography line shapes 
drastically reduces numerical dispersion in the numerical integration of 
the relevant equations. With this technique, numerical integration 
becomes a useful, fast, and economical method for calculating gas 
chromatographic line shapes for volatile solutes exhibiting departures 
from Henry's law behavior. 
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FIG. 6. Effect ofNon gas chromatograph line shapes. The third algorithm was used. N = 50, 
100, 150, 200 (a-d). 
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FIG. 7. Effect of flow rate on gas chromatograph line shapes. The second algorithm was 
used. N = 100. At = 0.2 s. 
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